
ANDRÉS GUADAMUZFREE AND OPEN-SOURCE SOFTWARE

11

Free and Open-Source Software

ANDRÉS GUADAMUZ

I. INTRODUCTION

PERHAPS NO OTHER software-related topic is more written about,
and more misunderstood, than that of free and open-source software

(FOSS). The size of the software market is a good indication of the
economic importance of software. For 2006, the total information tech-
nology (IT) market encompassed US$1.16 trillion, of which software made
up US$394 billion.1 While most of the market belongs to commercial and
or proprietary software,2 the growing importance of computer programs
developed through non-traditional means is palpable. Not only has
open-source software become a recognisable phenomenon outside of the
techno-enthusiast circles, but some open-source programs such as Firefox
have achieved a surprisingly high level of market penetration.3 Google is
the largest corporate user of FOSS in the world, and their developers are
known to often state that ‘Every time you use Google, you’re using Linux.’4

Given the commercial relevance of software, the written instructions
which make up a computer program, generally known as source code, have
become a valuable commodity. The complexity and cost of a program can
be measured in terms of its source lines of code (SLOC), which give an
estimate of the amount of programming time required to create the
product. A commercial operating system such as Windows XP can have as
many as 40 million SLOC, and is developed by a team of 1,800 pro-
grammers.5 By contrast, Debian 3.0, an open-source operating system, is
said to have 105 million SLOC, and has been developed by a multinational

359

1 Business Software Alliance, Research and Statistics, http://www.bsa.org/country/Research
%20and%20Statistics.aspx.

2 See below, page X.
3 Sixteen per cent of the total browser market as of February 2008, according to

thecounter.com, see: http://www.thecounter.com/stats/2008/February/browser.php.
4 C DiBona, ‘Joining OIN’, Google Blog (2007), http://googleblog.blogspot.com/2007/08/

joining-oin.html.
5 V Maraia, The Build Master: Microsoft's Software Configuration Management Best Practices

(Indianapolis, IN, Addison-Wesley, 2005) 78.

Administrator
A commercial operating system such as Windows XP can have asmany as 40 million SLOC, and is developed by a team of 1,800 programmers.

Administrator
are these actually the data for XP? If so, perhaps re-cast sentence. Or generalise to tens of millions of SLOC and a couple of thousand programmers?



community without a commercial strategy.6 Given such costly endeavour,
open-source software development seems a counter-intuitive method of
coding software. So why does it still exist? Why do thousands of pro-
grammers give their time to release source code to the wider community?
And most importantly, how is it achieved? What are the legal implications
of such a development method? This chapter will address some of these
questions.

II . A BRIEF HISTORY OF FOSS

FOSS can be traced back to the creation of the Unix operating system7

which was developed between 1969 and 1970 by a small team at AT&T
Bell Labs.8 AT&T had been the subject of an antitrust suit in 1949, which
resulted, amongst other things, in the signing of a consent decree in 1956
to settle the suit in accordance with stipulations established by the Sherman
Antitrust Act.9 This consent required the company to reveal any patents it
held and to license them to competitors. The practical effect of this was
that AT&T could not profit from its work on Unix. It disbanded the team
that had been developing the operating system and started selling it cheaply
and with no guarantees, support or bug fixes of any kind.10 As the source
code was made available, this prompted users to band together and start
working on fixes to known problems.11 In 1974, AT&T was the subject of
yet another antitrust suit, which resulted in it parting company with the
Bell part of the enterprise, allowing it to commercialise Unix. Eventually,
the company released a definitive version of the software in 1979,
increased its price and ceased making the source code available to the
public.12

During this process, and as early as 1973, the software had been rewrit-
ten to accommodate new hardware variations. Changes were constantly
made by different teams within Bell Labs and the wider academic com-
munity—notably from the University of California at Berkeley. It was this
unique environment of sharing between experts leading to the creation of
Unix which set the tone for the future evolution of the free software and
open-source movements.13

360 Andrés Guadamuz

6 JJ Amor et al, ‘Measuring Woody: The Size of Debian 3.0’ (2004) 5(10) Reports on Systems
and Communications 1.

7 An operating system, eg MS-DOS, UNIX, Linux, OSX or Windows, is a computer program
that allows a computer to run; it serves as the basic interface between the user and the computer.

8 G Moody, Rebel Code: Linux and the Open Source Revolution (London. Penguin, 2002) 13.
9 Ch 647, 26 Stat 209, 15 USC s 1–7.
10 Ibid, 14–16.
11 J Naughton, A Brief History of the Future (London, Weidenfeld & Nicholson, 1999)

172–74.
12 HE Pearson, ‘Open Source: The Death of Proprietary Systems?’ (2000) 16(3) Computer

Law & Security Report 151–56.
13 Moody, above n 8, 5–12.



The 1980s saw the culmination of the development of Unix. Many
companies started selling their own versions of the operating system, and
the academic community began distributing its own version called Berkeley
Software Distribution (BSD).14 In 1984, a software developer named
Richard Stallman, who had been involved with MIT, formed the Free
Software Foundation (FSF) to support the nascent ideas of sharing infor-
mation in the shape of developing free software and to accommodate the
GNU15 project.16 The 1980s saw the development of software under the
auspices of the FSF, encouraging the sharing of code between developers
who had never met each other. The FSF had been attempting to generate a
new Unix system, but they were missing some key components, notably a
kernel,17 for their operating system.18

The movement gained mainstream recognition in 1990 with the devel-
opment of a new Unix-based kernel19 called Linux. This began as a hacker
project by Finnish programmer, Linus Torvalds. He had been waiting for
the developments coming from the FSF relating to their Unix-based clone
system, but was impatient and wanted to run it right away. The fact that the
FSF had not created a kernel prompted Torvalds to develop his own. He
called it Linux and placed it on the Internet for free, asking programmers
to improve it.20 Torvalds secured feedback from other programmers by
making the source code for the Linux operating system available to be
examined by anybody who wished to do so. This led to the development of
different versions (known as distributions) of Linux, giving this operating
system an unparalleled amount of stability and security, as the community
was in charge of its support.

The term ‘open source’ itself is relatively new; it was coined during a
meeting in February 1998 in Palo Alto, California by a group of software
developers with links to Linux.21 The group met to plan a new strategy in
response to the ground-breaking announcement by Netscape that it would
be opening its operations and providing the source code of its popular
Internet browser to the public. Netscape decided to do this prompted by

Free and Open-Source Software 361

14 MK McKusick, ‘Twenty Years of Berkley Unix: From AT&T-owned to Freely Redistribut-
able’, in C Di Bona, S Ockman and M Stone (eds), Open Sources: Voices from the Open Source
Revolution (Sebastopol, CA, O’Reilly & Associates, 1999) 31–46.

15 GNU is a recursive acronym that means ‘GNU is Not UNIX’.
16 R Stallman, The GNU Project (1998), http://www.gnu.org/gnu/thegnuproject.html.
17 The kernel is the fundamental part of an operating system. It is a piece of software

responsible for providing access to the computer's hardware by other software applications.
18 R Stallman, ‘The GNU Operating System and the Free Software Movement’, in Di Bona,

Ockman and Stone (eds), above n 14, 53–70.
19 The kernel is the central component in an operating system, which manages system

resources and allocates memory and processor usage. {NOT QUITE WHAT IT SAYS n 17?}
20 Moody, above n 8, 31–35.
21 Open Source Initiative, History of the OSI (2001): http://www.opensource.org/docs/

history.html.



fierce competition from Microsoft.22 Netscape believed that this gesture
would give them a precious opportunity to sell the open-source software
development approach to the corporate world.23

The need to create a term to describe this approach had become
pressing. Until then, the most common way to describe output produced
through the non-proprietary approach was by using the expression ‘free
software’. It was apparent to many software developers that this movement
had a tarnished reputation in the business world as a result of association
with some of the more radical ideas held by people linked to Stallman and
the FSF. In short, it was thought that trying to sell a more commercial
non-proprietary approach would not work if they kept referring to the
work as ‘free software’. A more business-friendly philosophy was needed,
along with a new name. Hence ‘open source’ was coined, a term that was
considered less ideological.24 Many developers welcomed the move, helped
in great part by the Linux community using the existing network of
websites, message boards and magazines.25 The rest, as they say, is history.

III . KEY CONCEPTS AND DEFINITIONS

A. Common Characteristics of FOSS Licences

It will be clear from the above discussion that there are two names given to
open-source developments: free software and open-source software,
referred to together by the acronym FOSS. Contrary to popular miscon-
ception, it is important to note that FOSS does not necessarily mean free of
charge, and it is not a movement opposed to traditional intellectual
property protection. In its more general form, FOSS is simply software that
is subject to later modifications by the user or other developers by allowing
free access to its source code.26 In this light, non-proprietary software is
considered such if it is released under a licence that allows later modifica-
tions, also known as ‘forks’, together with legal documents which enable
others to make their own modifications and distribute them accordingly.
FOSS licences also allow a wide range of freedoms for consumers that they

362 Andrés Guadamuz

22 It may even be said that Microsoft’s competitive tactics against Netscape were excessive and
even predatory, and they prompted the anti-trust case brought by the US Department of Justice
against Microsoft. A roadmap to the case can be found here: http://www.stern.nyu.edu/
networks/ms/top.html.

23 Open Source Initiative, above n 21.
24 Moody, above n 8, 144–55.
25 Open Source Initiative, above n 21.
26 Source code is the programming statement expressed in a programming language that exists

before the program is compiled into an executable application. The executable form of the
software is generally known as the object code, and can only be read by the machine (see Figure
11.1).



would otherwise not have, such as making copies of the work, or installing
and distributing the software.

It is important to stress that there are ideological differences in the
choice of either open-source or free software. The FOSS acronym is a com-
promise between the different philosophies. This author prefers the use of
the term ‘non-proprietary software’ as an umbrella definition that refers to
the different subcategories encompassed by this movement. It is also covers
different types of works, from those offered in exchange for payment, to
those that are offered freely to the public. This would include works that
are in the public domain,27 something not included in the definitions of
open-source software or free software. Another acceptable term is ‘libre
software’.28 This leads to another common acronym: free, libre and open-
source software (FLOSS).

Having discussed the general definition of the non-proprietary software
model, it is necessary to explain how it fits with other types of software

Free and Open-Source Software 363

Source code Object code

#!/usr/bin/perl
use LWP::Simple;
use Math::BigInt;
my $html = get
my($prime) = $html =~
m{<blockquote>([^<]+)</blockquote>};
$prime =~ tr{0-9}{}cd;
$prime = Math::BigInt->new($prime);
my $binary = '';
while ($prime > 0)
{ $binary = pack('N', ($prime % 2**32)) .
$binary;
$prime /= 2**32; }
$binary =~ s{^\0+}{};
local *FH;
open(FH, '| gunzip -acq') or die 'cannot
gunzip, $!';
binmode FH;
print FH $binary;

Figure 11.1 Source code and object code

27 This is software that has been placed in the public domain specifically by their authors, and
is known as public domain software to distinguish it from other types. In software development,
public domain does not necessarily mean free; it is simply a legal term to refer to works that are
not copyrighted. See Free Software Foundation (FSF), Categories of Free and Non-Free Software
(2008), http://www.fsf.org/licensing/essays/categories.html.

28 Libre is a word present in various Romance languages that means free as in freedom, not
free as in having no monetary cost. For more on this use, see Working Group on Libre Software,
Free Software/Open Source: Information Society Opportunities for Europe? (2000), http://eu.
conecta.it/paper.pdf.



development, particularly commercial software ownership and proprietary
software. Proprietary software is usually defined as a computer program,
‘[the] use, redistribution or modification [of which] is prohibited, or
requires you to ask for permission, or is restricted so much that you effec-
tively can't do it freely’.29 This is the opposite of non-proprietary software,
for which there is a possibility of having access to the code and changing it.
It must also be stressed that commercial software is a subset of proprietary
software, but not all proprietary software is necessarily commercial.

Commercial software is a program that is created specifically to be
marketed and sold.30 There are several types of software that are offered
free of charge, but cannot be changed. Examples of this would be freeware
and shareware. Freeware is software that is offered to the public free of
charge, but cannot be changed in any way because it is protected by copy-
right and closed such that the user cannot incorporate its programming
into anything else they may be developing. Shareware is software dis-
tributed free on a trial basis with the understanding that if the user wants to
continue using it, they must acquire a licence. Some software developers
offer a shareware version of their program with a built-in expiration date
(eg after 30 days, the user can no longer get access to the program). Other
shareware (sometimes called liteware) is offered with certain capabilities
disabled in the hope that the user will buy the complete version of the
program.31 Another type of proprietary software that should not be
confused with non-proprietary software is called a demo. This is software
that presents a limited edition of a program, distributed at no cost over the
internet, usually before the general commercial release of the software. The
objective is to promote the program by presenting some of its features in
the hope that users will later buy the full version.

B. Free Software

The free software movement is centred on the concepts and philosophies of
developing programs and distributing them freely. As described earlier, the
term arose from Richard Stallman’s own experiences as a programmer in
the 1980s. For a while, the term ‘free software’ was synonymous with the
non-proprietary philosophy of software development. As personal com-
puters became widespread, software programmers continued to exchange
pieces of code amongst themselves, providing better ways of developing
software in a more efficient manner. Sharing code is an efficient way of
programming, as it brings together the work and experience of pro-

364 Andrés Guadamuz

29 FSF, see above n 27.
30 Ibid.
31 Ibid.



grammers around the globe, reducing costs and making it easier to find
errors. Other factors that have served as an important motivation for
sharing code stem from the fact that programmers engaged in the movment
mostly worked for non-profit organisations and academic institutions.
Ownership of the intellectual property was thus less important than it
might be now. Stallman described it as follows:

Whenever people from another university or a company wanted to port and use
a program, we gladly let them. If you saw someone using an unfamiliar and inter-
esting program, you could always ask to see the source code, so that you could
read it, change it, or cannibalize parts of it to make a new program.32

The decision to create the FSF and the GNU project came from the
personal disillusionment felt by Stallman after the collapse of the early
software-sharing community, and a notable increase in the development of
proprietary software. Stallman explains that software began to have restric-
tions imposed in the shape of proprietary licences telling users they could
not access the source code to modify the software, or share it with other
people with a view to enhancing its functionality. If the user engaged in any
tinkering with the code, then he stopped being a hobbyist and became a
pirate.33 Eventually, Stallman and other like-minded programmers created a
powerful software development force under the general principles of non-
proprietary software.

Stallman defines free software as having the following four character-
istics:

� The freedom to run the program, for any purpose (freedom 0).
� The freedom to study how the program works, and adapt it to your

needs (freedom 1). Access to the source code is a precondition for this.
� The freedom to redistribute copies so you can help your neighbor

(freedom 2).
� The freedom to improve the program, and release your improvements to

the public, so that the whole community benefits (freedom 3). Access to
the source code is a precondition for this.34

As understood by the proponents of free software, programmers and other
developers can charge for the software if it is their desire to do so, but the
same underlying freedoms must exist whether or not it is acquired for a
monetary fee. The user must still have all of the freedoms described, with
access to the source code as the most basic requisite.35

According to the GNU project, there are several types of free software,
some that conflict with the values advocated by the FSF, and some that do

Free and Open-Source Software 365

32 Stallman, above n 16.
33 Revolution OS, directed by JTS Moore (2001).
34 FSF, The Free Software Definition (2007), http://www.fsf.org/licensing/essays/free-sw.html.
35 FSF, Selling Free Software (2006), http://www.fsf.org/licensing/essays/selling.html.



not. The main category is an overarching free software definition, which
states that the software qualifies as free software if it ‘comes with
permission for anyone to use, copy, and distribute, either verbatim or with
modifications, either gratis or for a fee. In particular, this means that source
code must be available.’36

The FSF has promulgated a policy of making available software termed
‘free software’, stating that the software must follow the philosophy
described. If the program comes with too many restrictions, it will not be
granted certification. Certain restrictions are acceptable if these are not
excessive.37 One of the main restrictions is that of subsequent licensing,
under which software must be maintained as ‘free’.

C. Open Source

In its broadest sense, open source is the opposite of ‘closed source’, the
traditional proprietary approach to software development in the com-
mercial world. Closed source is software ‘in which the customer gets a
sealed block of bits which cannot be examined, modified, or evolved’.38

The common thread in both free software and open-source software is that
the source code remains available for examination, modification and peer
review.

As mentioned, the official definition was based on the Debian Free
Software Guidelines, a licensing model written by software developer Bruce
Perens and which accompanies the Debian GNU/Linux system, a Linux
distribution.39 These existing documents were improved and modified by
developer Eric Raymond and form what is known as the ‘open-source
definition’ (OSD). The definition not only requires that open-source soft-
ware should make available the original code, but also sets the following
principles underlying all open-source software:

Free Redistribution: this means the software will have no restrictions regarding
further distribution as part of another package.
Source Code: the source code will be made available for examination, either by
including the software in the software package or by making it available at a pub-
lic location.
Derived Works: the licence must allow modifications and the development of
derived works.
Integrity of The Author’s Source Code: the licence may allow restrictions about
changes to the original source code only if the distributor assumes the responsi-
bility of fixing any problem found with the software.

366 Andrés Guadamuz

36 FSF, above n 27.
37 Ibid.
38 E Raymond, ‘Keeping an Open Mind’ [1999] Cyberian Express April, http://tuxedo.org/

~esr/writings/openmind.html.
39 The guidelines can be found at: http://www.debian.org/social_contract.html#guidelines.



No Discrimination Against Persons or Groups: OSS can be used both for ‘abor-
tion clinics and anti-abortion activists’.40

No Discrimination Against Fields of Endeavour: the licence will not discriminate
the usage of the software for specific fields of work.
Distribution of License: there will be no need for the development of additional
licences for those who receive the software from any party other than the
licensee.
Licence Must Not Be Specific to a Product: if the software is distributed within a
larger software bundle, the software will still be subject to the larger product
license.
The Licence Must Not Restrict Other Software: this means that there will not be
any restrictions placed on other software being distributed under the same soft-
ware bundle.41

The main characteristic of open source as underpinned by these points is
the idea of peer review of a work. By allowing more people access to the
code that makes up a software, that software will gain in dependability,
stability and security. In the words of Raymond, ‘open source puts the
software customer in the driver's seat, dramatically lowers total cost of
ownership, and is the only recipe that works for high reliability’.42

Since the original coining of the term, open source has gained substantial
recognition in technical circles. But the success has come at a price. As the
term gained more credibility and popularity, there was nothing to prevent a
software developer releasing a software program and labelling it ‘open
source’ as a marketing ploy. This was possible without the software actually
fulfilling any of the requirements under the definition, or even where it
fell into the proprietary category. The lack of an enforcement mechanism
prompted several activists to create the Open Source Initiative (OSI) to
analyse software licenses and measure them against the OSD, and hence to
certify software as genuinely open source.43 The OSI maintains a public list
of all software that it has certified, thus enabling consumers and others to
know whether the software they are using is indeed open source.44

D. Copyleft

The third most important concept to understand in FOSS licences is that of
copyleft. Copyleft is a legal mechanism contained in a licence which main-
tains the general freedoms awarded to users of software licensed as FOSS,

Free and Open-Source Software 367

40 Interview with Bruce Perens. Revolution OS, above n 33.
41 Open Source Initiative, The Open Source Definition, Version 1.9 (2006), http://opensource.

org/docs/osd.
42 Raymond, above n 38.
43 Open Source Initiative, Certification Mark (2006), http://opensource.org/docs/certification_

mark.html.
44 The list is maintained at: http://opensource.org/licenses.



but by acquiring a program released as copyleft, the user agrees that the
software will not be used to develop closed-source applications derived
from it.45 This is done via a clause that requires all derivatives arising from
the original code to be released under the same freedoms as those under
which they were received.

Copyleft was developed from a perceived need to protect the fruits of
non-proprietary development. After several years of producing computer
programs through sharing expertise and offering the code to the public,
some programmers started taking the source code, tweaking it and selling it
as commercial proprietary software. Their development costs were thus
very low.46 Copyleft licensing became the only means of stopping com-
panies from profiting from non-proprietary products and then creating
products that went against the spirit of the free software movement.

Copyleft is an elegant legal solution that imposes a restriction through a
chain of software distribution. The contractual clause ensures the propa-
gation of a licence through that same chain, aptly named ‘viral contracts’ by
Radin, who defines them as ‘contracts whose obligations purport to “run”
to successor of immediate parties’.47 These contracts spread in a viral form
as the licensee must include the terms of the licence in any subsequent
‘fork’ distributed because that obligation is part of the contract. Subsequent
licensees will have to impose the same contractual terms in further licences
they promulgate in perpetuity.

Despite the fact that copyleft licences tend to promote the free software
principles and the definitions drafted by the FSF and Stallman, some of the
contractual restrictions in copyleft licences have prompted criticism from
enterprises and commercial users. Copyleft is a strong tool to keep code
open, but it may also prove overly restrictive for enterprises wishing to
profit from those derivatives.

IV. FOSS LICENCES

A. Licence Ecology

This chapter has so far described the underlying philosophies and
principles that determine the development strategy known as FOSS. These
are implemented and enforced through legal documents. Although the
definitions and principles are important, one could argue that licences are

368 Andrés Guadamuz

45 LE Rosen, Open Source Licensing: Software Freedom and Intellectual Property Law (Upper
Saddle River, NJ, Prentice Hall, 2004), 105.

46 FSF, Copyleft: Pragmatic Idealism (2005), http://www.fsf.org/licensing/essays/pragmatic.
html.

47 MJ Radin, ‘Humans, Computers, and Binding Commitment’ (2000) 75(4) Indiana Law
Journal 38.



the one thing that separates proprietary and non-proprietary software
models.

The inclusive nature of the definitions of free and open-source software
mean that there is a large number of software licences that fall into one or
other camp.48 At the time of writing, the OSI listed 72 certified licences
while the FSF identifies more than 100.49

As FOSS licences cover such a broad spectrum, classification is difficult.
One could distinguish them as either FSF or OSI certified, but as has been
pointed out, there is substantial overlap between the definitions and hence
the licences. One way to categorise them is as either copyleft or non-
copyleft. The common elements of FOSS licences are:

� Attribution. Copyright notices are to be kept intact, and the author(s)
will be attributed in the code.

� Access to the source code. This is the most basic common element in all
licences. The source code will be included either with the distribution,
or is to be made available to the public in an open source repository.50

� User rights. Users are granted a non-exclusive right to use, copy and
distribute the work.

� Derivatives. All open-source licences allow developers to make modifica-
tions to the source code and make those modifications available to the
public. This modification may come with restrictions, such as the one
present in copyleft licences.

The most basic FOSS licence is the BSD licence,51 which is short and con-
cise. There are several variations of the licence, evidencing its popularity
within the FOSS community. The main part is the assignation of rights,
which states:

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
—Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.
—Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
—Neither the name of the <ORGANIZATION> nor the names of its contribu-
tors may be used to endorse or promote products derived from this software
without specific prior written permission.52

Free and Open-Source Software 369

48 Research by the author has uncovered a total of 129 unique FOSS licences.
49 Some of them are on both lists. See http://www.fsf.org/licensing/licenses/.
50 Such as SourceForge, located at http://sourceforge.net.
51 http://www.opensource.org/licenses/bsd-license.php.
52 Ibid.



This is a permissive licence with regard to the range of rights granted to the
user, as it allows all redistribution of the software both in binary and source
code. Other short and elegant OSS licences, eg the MIT licence, take a
similar approach.53

The most comprehensive non-copyleft, open-source licence is the
Apache 2.0 licence,54 which is more restrictive than both the BSD and MIT
licences. This is an important legal document because the Apache Software
Foundation produces the Apache HTTP Server software, one of the most
widely used open-source programs in the world.55 The Apache licence
maintains the freedom to redistribute the software in binary or source code
form, the freedom found in most FOSS licences, but adds the right to
create derivative works from the original.56 The redistribution and modifi-
cation of the work are allowed provided the copy or derivative work is
included with proper attribution of the originator(s) of the program, and
that the copyright notices attributing ownership of the code to the original
programmers are attached. This approach falls short of the viral clause
included in copyleft licences and demonstrates one of the main differences
between the licensing models. Another interesting feature included in the
Apache licence is the assignment of copyright and grant of patent licence
despite the fact that the Apache Software Foundation (drafters of the
patent) have stated that that they do not own, and have not applied for,
any software patents.57

A new development in FOSS licensing is that some developers have been
using open licences not originally designed for software. One example is
Creative Commons, a project started by Lawrence Lessig following the
licensing ideals of FOSS, but directed towards the protection of creative
works, such as literary, artistic and musical creations.58 Although Creative
Commons licences are not designed to cover software and source code,
there is nothing in the way in which they are drafted that excludes them
from being used to licence software.

370 Andrés Guadamuz

53 http://www.opensource.org/licenses/apache2.0.php.
54 See full text at http://www.opensource.org/licenses/apache2.0.php.
55 As of February 2008, Apache commands 51 per cent of the total web server market, while

some competitors, such as Google Server, are based on Apache code. See Netcraft, February
2008 Web Server Survey (2008), http://news.netcraft.com/archives/2008/02/06/february_2008
_web_server_survey.html.

56 In UK law, this would be known as ‘adaptations’.
57 Apache Software Foundation, Apache License v2.0 and GPL Compatibility, http://www.

apache.org/licenses/GPL-compatibility.html.
58 For more about Creative Commons, see N Elkin-Koren, ‘What Contracts Can't Do: The

Limits of Private Ordering in Facilitating a Creative Commons’ (2005) 74(2) Fordham Law
Review 375; and S Dusollier, ‘The Master's Tools v the Master's House: Creative Commons v
Copyright’ (2007) 29(3) Columbia Journal of Law & the Arts 271.



B. GNU General Public Licence Version 2

The GNU General Public License (GPL) is the most important licence in
the FOSS movement. At the time of writing, 68 per cent of all projects
listed in the SourceForge open-source repository are released under the
GPL.59 But what makes the GPL the licence of choice for non-proprietary
development?

The GPL was first drafted in 198560 by Richard Stallman in order to
accommodate the ideas of free distribution of source code implemented by
the FSF.61 The GPL is the first copyleft licence, and as such is designed to
maintain the four freedoms in the FSF definition, but it also contains the
copyleft clause.62 Version 2 of the licence, drafted by Stallman and Moglen,
was released in 1991.63

The GPL is the legal framework that sustains most of the copyleft
system.64 It reads as a mixture of a legal contract65 and an ideological
manifesto. The preamble to the work restates clearly some of the most
common beliefs of free software movement and non-proprietary approach,
with several admonitions about the meaning of the word ‘free’. The key
point is that the source code must be made available to the users. The
preamble states:

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.66

The licence specifies that this is achieved by two means: by protecting the
software through copyright; and by providing the users with a licence that
gives them the freedom to use and modify the software in any way they see
fit if they meet the stated conditions. The main body of the licence
reiterates these ideas. Section 1, for example, states:

1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the absence

Free and Open-Source Software 371

59 Out of 73,978 listed projects, 50,013 were released with the GPL. See http://sourceforge.
net/softwaremap.

60 However, the official dating of version 1 is 1989. This is because the GPL was known
originally as the EMACS General Public License.

61 Stallman, above n 18, 59.
62 Moody, above n 8, 26–29.
63 Ibid.
64 The full text of version 2 of the licence can be found at http://www.gnu.org/licenses/

old-licenses/gpl-2.0.html.
65 Some people do not believe that the GPL is a contract, a question that will be discussed in

detail later.
66 FSF, GNU General Public License v2, Preamble.



of any warranty; and give any other recipients of the Program a copy of this
License along with the Program.67

This section also mentions that the user can make monetary charges when
distributing the copy as long as the charges are for expenses in making
copies of the software. This is consistent with the general free software
characteristic that does not discriminate against commercial software as
long as it is not proprietary commercial software.

Many of the provisions of the GPL can be found in other non-propri-
etary software licences. What makes the GPL different to most others is
section 2(b) as this is where the restrictions against using the software to
create commercial software are specified. The section reads:

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet all
of these conditions: . . . b) You must cause any work that you distribute or pub-
lish, that in whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties under the terms
of this License.68

This is the best example of the copyleft clause, as any software developed
using the open-source code of the program must ensure that the GPL is
transferred to further users of the derivative software. As evidenced by the
widespread adoption of the GPL version 2, this is indeed a viral licence
because derivatives must be released under the same licence, thus ensuring
downstream use of the licence terms.69

Despite the fact that copyleft licences tend to promote the free software
principles and the definitions drafted by the FSF and Stallman, some of the
contractual restrictions in licences such as the GPL have come in for
criticism from enterprises and commercial users.70 Despite this, the GPL
has stood well against most challenges, as exemplified by its longevity and
the relatively small amount of litigation that it has generated.71

There is another version of the GPL, called the GNU Lesser General
Public License (LGPL).72 This version is almost identical to the GPL but
does not contain a copyleft clause. This is because there is sometimes need
for software to interact with non-FOSS code and to do so a non-copyleft

372 Andrés Guadamuz

67 Ibid, s 1.
68 Ibid, s 2(b).
69 See A Guadamuz, ‘Viral Contracts or Unenforceable Documents? Contractual Validity of

Copyleft Licenses’ (2004) 26(8) European Intellectual Property Review 331.
70 For some criticisms, see A Guadamuz, ‘Legal Challenges to Open Source Licences’ (2005)

2(2) SCRIPT-ed 301.
71 See JS Miller, ‘Allchin’s Folly: Exploding Some Myths about Open Source Software’ (2002)

20 Cardozo Arts & Entertainment Law Journal 491.
72 http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.



version is required or else the linking libraries would have to be released
under the GPL.

C. GPL Version 3

While the longevity and success of the GPL have been a testament to its
legal validity,73 the FSF felt that it was time for an updated version, giving
the opportunity to fine-tune some legal issues and to respond to develop-
ments in the free software community. Prior to the release of the draft,
Stallman and Moglen identified key issues they believed needed to be
addressed by the licence.74 These were as follows:

� Internationalise the licence. While GPL version 2 was drafted with US
law in mind, it aimed to meet the international copyright principles
present in the Berne Convention.75 While most issues of enforcement
have taken place outside of the US,76 it was felt that the licence required
clarity in international compliance.

� Standard setting. Stallman and Moglen argued that the GPL has become
an international standard for the FOSS industry, so any update should
take this factor into consideration.

� Responding to changing circumstances. The FOSS community, and in
particular the principles of free software, are faced with new threats,
such as patentability of software, trusted computing and digital rights
management (DRM). The GPL must change to meet those threats.77

So, what is contained in the new licence? There have been some major
changes in both style and substance. The GPL has never been known for its
conciseness and clarity, so it is unfortunate that version 3 is longer and
more opaque than its predecessor.78 This is a real problem, as even before
being updated, the GPL was subject to much differing legal interpre-
tation.79

The drafting process was an interesting exercise in governance. The FSF
must be commended for the inclusive and open process through which it
undertook discussions on drafting. The first draft of the GPL version 3 was

Free and Open-Source Software 373

73 For further legal analysis of its validity, see R Gomulkiewicz, ‘De-bugging Open Source
Software Licensing’ (2002) 64 University of Pittsburgh Law Review 75.

74 E Moglen and R Stallman, ‘GPL Version 3: Background to Adoption’ (5 June 2005),
http://www.fsf.org/news/gpl3.html.

75 Berne Convention for the Protection of Literary and Artistic Works 1886.
76 J Höppner, ‘The GPL Prevails: An Analysis of the First-ever Court Decision on the Validity

and Effectivity of the GPL’ (2004) 1(4) SCRIPT-ed 662, at http://www.law.ed.ac.uk/ahrb/
script-ed/issue4/GPL-case.asp.

77 Stallman and Moglen, above n 74.
78 GPL v3: http://www.fsf.org/licensing/licenses/gpl.html.
79 R Gomulkiewicz, ‘General Public License 3.0: Hacking the Free Software Movement's

Constitution’ (2005) 42(4) Houston Law Review 1015, 1034–36.



made available for public discussion in January 2006. The website on
which it was made available was open for public comment, and hundreds
of notes from the community were shared for all to see. Two more drafts
were made available which were the subject of closed and open meetings,
conferences and discussion that included stakeholders and GPL users in
general. Although the participation was unprecedented in such a drafting
exercise, it must be said that the end result seems to have suffered from too
much compromise. The text of the GPL version 3 is nearly unreadable in
places.

The document which identified the need for a redraft prompted expec-
tations that the GPL v3 would overhaul the protection of GPL software
vis-à-vis software patents and it would update the copyleft clause present in
the existing section 2(b). Although these are topics covered in the final text,
the real surprise came with regards to DRM and in particular technical
protection measures (TPMs). The new GPL makes a statement on the
future of open-source usage in the entertainment industry by including
strong wording against TPMs. One of the most contentious parts is section
3 on DRM:

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.80

This paragraph specifically excludes all works distributed under the GPL
from the anti-circumvention measures in the WIPO Copyright Treaty81

(WCT) by stating that the licensed software shall not constitute ‘an
effective technological protection measure’, thus making it inapplicable for
protection. In other words, the distribution of derivatives with works that
contain certain restrictive types of DRM is prohibited. This is an elegant
legal solution to the perceived problem, as it excludes all relevant software
from anti-circumvention legislation by contractual means.

Surprisingly, and contrary to what many expected, GPL version 3 seems
to direct all of its power against TPMs but not software patents. This is
perhaps a reflection of the fact that some of the biggest free and open-
source software players in the US are acquiring patents as well.82 Stallman
and Moglen seem pragmatic regarding software patents and recognise that
FOSS developers may be involved in complex patent licensing transactions.
Hence their implicit recognition of the status quo.83

374 Andrés Guadamuz

80 S 3 of GPL v3.
81 Specifically, Art 1 WCT, which states that ‘Contracting Parties shall provide adequate legal

protection and effective legal remedies against the circumvention of effective technological
measures.’

82 Apache, IBM and Novell have applied for thousands of software patents in the US. For more
about this, see A Guadamuz, ‘The Software Patent Debate’ (2006) 1(3) Journal of Intellectual
Property Law & Practice 196.

83 See their draft rationale at http://gplv3.fsf.org/rationale.



Version 3 expands on the implicit patent licensing in GPL version 2,
making it an explicit patent grant in section 11. The new patent grant
reads:

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor's essential patent claims, to make, use, sell, offer for
sale, import and otherwise run, modify and propagate the contents of its contrib-
utor version.

In addition to this, GPL version 3 adds paragraphs relevant to patents that
are drafted with specific issues in mind. In particular, there is a paragraph
that seems to be drafted to respond to patent licence agreements between
Microsoft and some FOSS developers, such as Novell.84 Another issue-
specifc section relates to so-called Tivoisation of code, which is an existing
loophole present in previous versions by which modified code released
under the GPL is distributed to the public but locked using hardware (such
as the copyleft code contained in TiVO players).85

These drafting practices are, in the author’s opinion, the biggest problem
with the GPL. A document that is supposed to act as the constitution of the
free software ideals should not be bogged down in these details.

Another big change in GPL version 3 is that it revamps the old copyleft
section 2(b). As explained earlier, under the current GPL the copyleft
aspects only apply to derivative works that are distributed to the public. In
other words, you take a work under the GPL, change it and then distribute
your own adaptation. Then you have to redistribute it under the GPL. This
simple rule generally resulted in clear-cut cases in which the GPL would
apply, and those where it would not. For example, imagine that a hardware
developer creates a driver module that interacts with the Linux kernel
(distributed under the GPL). It is not part of the kernel, but it interacts
with it. Under GPL version 2, it is clear that this module is not a derivative,
and therefore it does not need to be distributed under the GPL.

What happens with GPL version 3? The situation with derivatives is less
straightforward. The copyleft section in the new GPL has been given a
boost. Users and developers still have the right to install and use GPL
software without restrictions. Developers also have the right to privately
modify the software, unless they have initiated a patent suit ‘against anyone
for making, using or distributing their own works based on the Program’.
The problem is that of modifications that are distributed. Consider section
5(c) (the old section 2.b):

Free and Open-Source Software 375

84 This is the Patent Cooperation Agreement—Microsoft & Novell Interoperability Collab-
oration, signed October 2006, see http://www.microsoft.com/interop/msnovellcollab/patent_
agreement.mspx.

85 C O'Riordan, ‘Tivoisation Explained—Implementation and Harms’, FSF Europe Briefing
paper (December 2006).



(c) You must license the entire work, as a whole, under this License to anyone
who comes into possession of a copy. This License will therefore apply, along
with any applicable section 7 additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This License gives no permission
to license the work in any other way, but it does not invalidate such permission if
you have separately received it.86

This would certainly apply to anyone who includes any sort of modifi-
cation of code into her work. Imagine, for example, that you include
modified modules from the Linux kernel in your work so as to be
compatible with the kernel. An initial reading of section 5(c) would lead
one to believe that the entire program would need to be licensed under the
GPL. However, there is an exception for compilations. Section 5 reads in a
later paragraph:

A compilation of a covered work with other separate and independent works,
which are not by their nature extensions of the covered work, and which are not
combined with it such as to form a larger program, in or on a volume of a stor-
age or distribution medium, is called an ‘aggregate’ if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compila-
tion's users beyond what the individual works permit. Inclusion of a covered
work in an aggregate does not cause this License to apply to the other parts of
the aggregate.87

This seems like excessive protection. The wording generates legal uncer-
tainty—something picked up by commentators of the draft.88 The
paragraph tries to rationalise specific cases in which the revamped GPL
copyleft section will apply by inventing a new definition as to what a
compilation is. Software distributed in the same distribution medium has to
be GPL if it is a ‘compilation’, but not if it is an ‘aggregate’. Why create the
new terminology?

All of the above points make for an interesting legal mechanism, but one
that seems unnecessarily complex. Those developing small and medium
FOSS projects looking for a licensing scheme may very well think twice
about migrating to the new version. Although the licence was issued last
year, adoption has been slow. According to a survey by Evans Data, by
September 2007 only 6 per cent of FOSS projects had migrated to GPL
version 3. More worryingly, 43 per cent of respondents claimed that they
would never implement the new licence.89 Time will tell if this approach is
maintained.

376 Andrés Guadamuz

86 S 5(b) draft GPL v3 (emphasis added).
87 S 5 draft GPL v3.
88 For a series of comments, see: http://gplv3.fsf.org/comments/.
89 E Corradetti, ‘Open Source Developers Staying Away From GPLv3, New Evans Data Survey

Shows’, Evans Data Corporation (25 September 2007), http://www.evansdata.com/press/
viewRelease.php.



V. SOME LEGAL ISSUES

A. Contract or Licence? The Problem with Consideration

The issue of the legal nature of open-source licences has generated contro-
versy in legal circles. Some FOSS proponents, particularly those in the free
software camp, are adamant that FOSS licences are not contracts, but
copyright licenses. This may seem like an arcane legal distinction, but it
raises important questions about enforcement, jurisdiction, applicable law
and even about the validity of the licence. There may also be different legal
effects in some jurisdictions depending on whether a contract is a contract
for sale of goods, or a contract for sale of services.90

A licence documents a legal relationship through which the licensee is
granted permission to perform acts that could not otherwise be done
legally. When one buys commercial software, the licence allows the licensee
to install a copy of the program on a computer—an act that would
otherwise infringe copyright. In some jurisdictions, licences are contracts,
and are classified as a specific type of contractual obligation. However, in
other countries, licences are not contracts.

The question at the heart of this dichotomy between contracts and
licences rests on the issue of reciprocity, known in common law jurisdic-
tions as consideration.91 A typical argument is presented by FOSS advocate
and blogger Pamela Jones, when she asks: ‘Why isn't it a contract? Because
there are no further agreed-upon promises, no reciprocal obligations.’ 92

The lack of reciprocity is also mentioned by Moglen:

A contract . . . is an exchange of obligations, either of promises for promises or
of promises of future performance for present performance or payment. The idea
that 'licenses' to use patents or copyrights must be contracts is an artifact of twen-
tieth-century practice, in which licensors offered an exchange of promises with
users: ‘We will give you a copy of our copyrighted work,’ in essence, ‘if you pay
us and promise to enter into certain obligations concerning the work.’ With
respect to software, those obligations by users include promises not to decompile
or reverse-engineer the software, and not to transfer the software.93

Free and Open-Source Software 377

90 For a discussion of a distinction between software as sale of goods or sale of services in
software, see A Taubman in the Introduction to this edition and HL MacQueen, ‘Software
Transactions and Contract Law’, in L Edwards and C Waelde (eds), Law and the Internet:
Regulating Cyberspace (Oxford, Hart Publishing, 1997).

91 Famously defined in Currie v Misa (1875) LR 10 Ex 153 as ‘some right, interest, profit or
benefit accruing to one party, or some forbearance, detriment, loss or responsibility given,
suffered or undertaken by the others’.

92 See P Jones, ‘The GPL Is a License, not a Contract’ [2003] Linux Weekly News 3 December,
http://lwn.net/Articles/61292/.

93 E Moglen, Enforcing the GNU GPL (2001), http://www.gnu.org/philosophy/enforcing-gpl.
html.



The problem with this interpretation is that it comes from a jurisdiction-
specific analysis of contract law. In most civil law and mixed legal systems,
such as Scotland, contracts are present when the requirements of offer and
acceptance have been met.94 This means that unilateral acts can constitute
contracts under the appropriate conditions.95 However, in common law
jurisdictions the additional requirement of consideration must be met. This
is the reason why Jones and Moglen place so much emphasis on the issue
of reciprocity in FOSS licences. It is argued that open-source systems are
usually offered for free, which would mean that the important contractual
step of consideration is missing. Therefore, FOSS licences should be
classified as unilateral legal acts, and not contracts as such.

One could argue, however, that there is consideration in some FOSS
licences, particularly in copyleft licences. Risking oversimplification of the
rich case-law dealing with consideration and contract formation in
common law, one could generalise the concept as one of reciprocity, as has
been expressed earlier. If one defines consideration as such, then it would
be possible to see how copyleft clauses would fulfil the requirement of
consideration in jurisdictions where it is required. Copyleft clauses impose
an obligation to release modifications under the same licence as the one
under which it was obtained. The contract then would be formed like this:
making the software available under a FOSS licence would be the offer,
using the software under those conditions would be the acceptance, while
consideration would be met by the obligation imposed in the copyleft
clause. However, some scholars disagree that copyleft clauses meet the
requirement of consideration. Giles, for example,96 argues that copyleft is,
at best, illusory consideration, and has found several cases to support his
view. Of note he cites the case British Empire Films Pty Ltd v Oxford
Theatres Pty Ltd,97 where the courts found unilateral promises that
depended entirely on the will of one of the parties as illusory consideration.
As expressed by O’Brian J:

It is common ground that the plaintiff is obliged to supply nothing, and a sup-
posed consideration which is entirely dependent upon the will of the plaintiff
whether it will ever become operative is illusory.98

However, this does not seem to be a useful analogy, as the promises dealt
with in illusory consideration case-law are very specific, and seem not to
translate well into the realm of open-source software. For example, partici-
pants in the software development community may have their options

378 Andrés Guadamuz

94 HL MacQueen and JM Thomson, Contract Law in Scotland, 2nd edn (Edinburgh, Tottel,
2007) 54–56.

95 Ibid, 56–59.
96 B Giles, ‘“Consideration” and the Open Source Agreement’ (2002) 49 NSW Society for

Computers and Law, http://www.nswscl.org.au/journal/49/Giles.html.
97 [1943] VLR 163.
98 Ibid, 168.



seriously curtailed if they use copyleft software, as they will be under a very
real obligation to release modifications under the same licence as the one
under which they received it. True, they may choose not to use the
software, but is that not the case in all contracts? In other words, once they
have accepted the terms and conditions of the licence by using the software
and modifying it, the obligation imposed on them seems very real, and not
illusory at all.99

The contract/licence dichotomy was discussed at length in a recent case
in the United States, Jacobsen v Katzer,100 which dealt precisely with this
question.

The case involved Robert Jacobsen, an open-source developer partici-
pating in an open-source project called the ‘Java Model Railroad Interface’
(JMRI), a model train software released under the Artistic License.101

Jacobsen received a letter demanding licence fee payments from a company
named Kamind Associates, owned by Matthew Katzer, which had obtained
software patents over model railroad software.102 Jacobsen decided to
pre-empt legal action and sued Katzer first, alleging that the patent was
invalid on the grounds of obviousness, and for failure to meet disclosure
requirements. He later amended the complaint to include copyright
infringement, claiming his software pre-dated Katzer’s.

The US District Court for the District of Northern California ruled on a
motion to dismiss by the defendants, and on a motion for preliminary
injunction from the plaintiff. The District Court granted some of the
motions to dismiss, denied others and denied the claim for preliminary
injunction. The important part of the decision for the current discussion is
the analysis of the copyright infringement claims. The District Court
declared that because the software was released to the public online
through an open-source licence, there was therefore permission to use the
software. The Artistic License is not a copyleft licence: it allows modifi-
cation and the creation of derivatives, provided that those doing so doing
insert prominent notices on each file, and perform one of the following:

(a) place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as ftp.uu.net,
or by allowing the Copyright Holder to include your modifications in the Stan-
dard Version of the Package.

(b) use the modified Package only within your corporation or organization.
(c) rename any non-standard executables so the names do not conflict with

Free and Open-Source Software 379

99 Credit must go to FOSS legal expert Robert Gomulkiewicz, who explained some of these
ideas in an e-mail discussion in the Cyberprof mailing list. Other FOSS experts who come on the
side of thinking of the licences as contracts is OSI legal counsel Larry Rosen. See Rosen, above
n 45, 59–66.

100 2007 US Dist. LEXIS 63568; 535 F 3d 1373 (Appeal).
101 http://www.opensource.org/licenses/artistic-license.php.
102 US patent 7,216,836.



standard executables, which must also be provided, and provide a separate man-
ual page for each non-standard executable that clearly documents how it differs
from the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.103

The District Court made it clear that such restrictions are not copyright
restrictions but contractual obligations.

Based on the both the allegations in the amended complaint and the explicit
language of the JMRI Project’s artistic license, the Court finds that Plaintiff has
chosen to distribute his decoder definition files by granting the public a non-
exclusive license to use, distribute and copy the files. The nonexclusive license is
subject to various conditions, including the licensee’s proper attribution of the
source of the subject files. However, implicit in a nonexclusive license is the
promise not to sue for copyright infringement. . . . Therefore, under this reason-
ing, Plaintiff may have a claim against Defendants for breach the nonexclusive
license agreement, but perhaps not a claim sounding in copyright. . . . However,
merely finding that there was a license to use does not automatically preclude a
claim for copyright infringement. . . . The condition that the user insert a promi-
nent notice of attribution does not limit the scope of the license. Rather,
Defendants’ alleged violation of the conditions of the license may have consti-
tuted a breach of the nonexclusive license, but does not create liability for
copyright infringement where it would not otherwise exist.104

The District Court stated that there should be no presumption of a
copyright infringement claim, and that such claim should be proven before
the plaintiff can make its case. If the plaintiff cannot provide evidence that
such a claim may be successful in court, then Jacobson could only rely on
the contractual elements of the licence in order to seek redress—in other
words the failure to place attribution notices is not enough to make a
copyright claim, only a contractual one. Interestingly, the District Court
understood perfectly the trade-off in open-source licences that rests at the
very heart of the contract/licence dichotomy: if the user complies with the
licence, there is permission to use the software, and therefore there is no
copyright infringement. But if there is no claim for copyright over the
work, the only claim possible is breach of contract.

Katzer appealed the District Court ruling, and it made its way to the
Court of Appeals for the Federal Circuit (CAFC), which overturned the
decision holding that open-source licences set out permissions to use the
work, and if the licence disappears, then the user would be infringing
copyright. The ruling makes for interesting reading:

In this case, a user who downloads the JMRI copyrighted materials is authorized
to make modifications and to distribute the materials provided that the user fol-
lows the restrictive terms of the Artistic License. A copyright holder can grant the

380 Andrés Guadamuz

103 http://www.opensource.org/licenses/artistic-license.php
104 {ADD EXPLICIT REF} (emphasis added)



right to make certain modifications, yet retain his right to prevent other modifi-
cations. Indeed, such a goal is exactly the purpose of adding conditions to a
license grant. The Artistic License, like many other common copyright licenses,
requires that any copies that are distributed contain the copyright notices and the
copying file.105

It is heartening that the CAFC has understood the concepts behind
open-source licensing. In various passages, it clearly appreciated the basis of
the movement and the underlying rights. The CAFC has delivered the high-
est instance recognition to open licences—an encouraging sign for FOSS
development. The appeal has also pleased many in the FOSS community.
For example, the ruling closely follows the reasoning presented an amicus
curiae arguing against the District Court ruling. In it, the OSI, the Linux
Foundation and others argued that ‘it would be enormously beneficial to
public licensing for this Court to state clearly a rule regarding the impor-
tance of interpreting public licenses in a manner consistent with their
unique nature and federal copyright policy’.106

Despite the final decision in Katzer, this author still considers that it is
preferable to classify FOSS licences as contracts. Why is the FSF adamant
that its licences, in particular the GPL, are not contracts? There are
practical reasons why some FOSS proponents insist on licences not having
contractual strength. Moglen is on record as stating that the GPL primarily
rests on copyright and the international protection awarded by the Berne
Convention. He is uneasy with the global variability of contract law, and
concerned that a judge in one jurisdiction may impose local contract law
interpretations which may affect the project globally.107 By using copyright
instead of contract it is in the licensee’s best interest to make sure that the
licence is valid as he would otherwise be infringing copyright. Moglen says:

So all that I do is bring an infringement action. It is the defendant’s responsibility
to prove license and the only credible license for the defendant to plead is my
license, because code is not otherwise available except under that license.108

This seems a rather negative view of copyright licensing—as if all use of the
licensed work should be considered a priori infringement until proven
otherwise. A similar example might be if one invites a guest home, and the
moment they enter the premises, trespass is claimed. The invitation can be
seen as a unilateral licence allowing the guest to perform an action they

Free and Open-Source Software 381

105 add ref?
106 AT Falzone and CK Ridder, Brief of Amici Curiae Creative Commons Corporation, the

Linux Foundation, the Open Source Initiative, Software Freedom Law Center, Yet Another
Society, the Perl Foundation, and Wikimedia Foundation, Inc. in Support of Plaintiff-Appellant
and Urging Reversal (2008), http://jmri.sourceforge.net/k/docket/cafc-pi-1/ccc_brf.pdf.

107 M Hardin, ‘Interview Eben Moglen, Legal Counsel, Free Software Foundation’, Auskadi
Blog (2004), http://auskadi.civiblog.org/blog/_archives/2005/6/25/972325.html.

108 Ibid.



would not otherwise have a right to do. However, as discussed above in
Jacobsen v Katzer, there is a real possibility that the user will not have a
claim in copyright and so the obligations contained in the licence could
only be enforced through contract.

The above analysis is important point if one considers the practicalities
in FOSS development. Code is passed between and modified by people all
over the world. It is possible to imagine a situation where code has reached
a developer in such a modified state that the original owner will no longer
be able to claim copyright over it. English courts have considered the
minimal amount of code that would be infringing by following the general
qualitative test in cases of copying from another work. In both Richardson
Computers v Flanders109 and Ibcos v Barclays,110 the courts found that if
there had been any copying from a protected original work, there had to be
an analysis of whether such copying had been substantial to determine
infringement. Even quantitatively minimal copying might be qualitatively
substantial. This is evident in the case of Cantor v Tradition,111 where
copying of original source code took place from former employees of a
financial services company. In this case, expert witnesses found that only 2
per cent of the original source code had been copied, accounting for only
2,952 lines of code out of 77,000. The lines of code were deemed to be of
importance for some modules in the resulting software, but the copying
was not considered sufficient to find infringement. The copier nonetheless
agreed to take financial responsibility for the infringed code and offered to
pay for it. One could thus imagine a situation where enough changes have
occurred to create a new work—one where the original code would no
longer be subject to copyright.

B. Enforcement

Considering there are such large numbers of participants and projects, a
surprising feature of FOSS is the very small number of cases that have been
brought to court. There are perhaps two reasons. Firstly, FOSS projects are,
for the large part, small and medium-sized endeavours, where large
numbers of participants only make one-off contributions.112 The small size
of the projects, coupled with the fact that most of the developers are not
motivated by profit,113 means that litigation will not be a priority for devel-
opers. As there is a strong sense of community in the open-source

382 Andrés Guadamuz

109 John Richardson Computers Ltd v Flanders and Chemtec Ltd [1993] FSR 497.
110 Ibcos ComputersLtd v Barclays Mercantile Highland Finance [1994] FSR 275.
111 Cantor Fitzgerald International v Tradition (UK) Ltd [1999] Masons CLR 157.
112 J Lerner and J Tirole, ‘Economic Perspectives on Open Source’, in J Feller et al (eds),

Perspectives on Free and Open Source Software (Cambridge, MA, MIT Press, 2005) 55–57.
113 R Ghosh, ‘Understanding Free Software Developers: Findings from the FLOSS Study’, in

Feller et al, above n 112, 34–42.



environment,114 conflict is usually resolved internally. Second, the FSF has
a very effective enforcement body for policing implementation of the GPL
called GPL-violations.org.115 It is a non-profit branch of the FSF which
monitors GPL usage, informs the public about infringement, names and
shames perpetrators, and, if necessary, issues cease-and-desist letters to the
offenders.116 In an industry that is famously risk-averse, and where profits
can be tight, it pays to comply with low-impact enforcement measures such
as cease-and desist letters. Similarly, companies that use open-source
software rely heavily on the community for updates, bug fixes and for
providing interoperability checks. GPL-violations.org serves as an effective
mechanism for keeping the community on one’s side.

Nonetheless, there has been some litigation involving open source and,
particularly, the GPL. The first case involved open-source developer
MySQL, the makers of a widely used database software released under the
GPL. MySQL brought an action against NuSphere—a software company
that it believed was using its source code to produce proprietary software—
something which contravenes the terms of the GPL.117 This suit was filed
in response to a claim by NuSphere against MySQL claiming ‘breach of
contract, tortious interference with third party contracts and relationships
and unfair competition’.118 MySQL’s counter-claim was for ‘trademark
infringement, breach of the interim agreement, breach of the GPL license,
and unfair and deceptive trade practices’.119 This case was settled out of
court120 in an agreement that seems to have suited MySQL as NuSphere
agreed to comply with the terms and conditions of the GPL.

The GPL has been the subject of three separate injunctions in German
courts. Harald Welte is an open-source developer working for the netfilter/
iptables team, which is software used in the Linux kernel. Welte is also one
of the main supporters of GPL-violations.org. Part of his strategy has been
to file complaints in German civil courts to help with enforcement strat-
egies. The first injunction was filed in 2004 against network equipment
manufacturer Sitecom.121 Welte claimed that Sitecom offered a wireless
network router which operated with firmware containing netfilter software

Free and Open-Source Software 383

114 C Kelty, ‘Trust among the Algorithms: Ownership, Identity, and the Collaborative Steward-
ship of Information’, in R Ghosh (ed), Code: Collaborative Ownership and the Digital Economy
(Cambridge, MA, MIT Press, 2005) 127–31.

115 http://gpl-violations.org/.
116 S O'Mahony, ‘Guarding the Commons: How Community Managed Software Projects

Protect their Work’ (2003) 32(7) Research Policy 1179.
117 K Nikulainen, ‘Open Source Software: Why Is it Here and Will it Stick Around?’ (2004)

1(1) SCRIPT-ed 149, http://www.law.ed.ac.uk/ahrc/script-ed/docs/opensource.asp.
118 This, of course, lends credence to the previous discussion about contracts. A FAQ about the

case can be found at http://www.mysql.com/news-and-events/news/article_75.html.
119 Ibid.
120 http://www.mysql.com/news-and-events/press-release/release_2002_14.html.
121 Landgericht Muenchen No 21 0 6123/04. An English version of the injunction can be

found at http://www.jbb.de/judgment_dc_munich_gpl.pdf.



released under the GPL. Although Sitecom did not modify the software, it
did not keep the copyright notices, and it ‘closed’ netfilter/iptables in that it
ceased to offer it under the GPL. The claimants asked the court to order
that the defendant ceased

distributing and/or copying and/or making available to the public the software
‘netfilter/iptables’ without at the same time . . . making reference to the licensing
under the GPL and attaching the license text of the GPL as well as making avail-
able the source code of the software ‘netfilter/iptables’ free of any license fee.122

The Munich District Court agreed with the claim and issued the injunction.
This case is of tremendous importance for the validity of FOSS licences.
Firstly, the Munich District Court recognised that the GPL is valid contract
in accordance to German law. Moreover, it upheld the contractual validity
of the main clauses, including the copyleft clause.123

The second injunction was issued in 2005 also by the Munich District
Court in a case also brought by Welte.124 The complaint was made against
Fortinet, a manufacturer of firewall software. Welte and GPL-violations.org
claimed that Fortinet was using Linux in its own code without releasing the
modifications under the GPL. Interestingly, Welte was able to bring an
action against Fortinet when another developer assigned code—called
initrid—that was being used by the defendants. The injunction mirrors that
issued in Sitecom. Eventually Fortinet settled out of court and announced
its compliance with the terms and conditions of the GPL stating that:

The source for the Linux Operating System Kernel and other GPL licensed com-
ponents, including Fortinet's modifications, is available upon written request at
the cost of CD copying and distribution. Additionally, Fortinet and its partners
are providing written copies of the GPL license terms with all Fortinet product
shipments.125

To conclude Welte’s hat-trick, in 2006 he obtained another ruling against
network hardware manufacturer D-Link for similar violations, this time in
Frankfurt.126

While these three victories for the GPL have been widely publicised in
FOSS circles, the litigation that made technology news headlines was that
of SCO v IBM.127 In March 2003 the SCO Group—a well-known software
developer of Unix-related products—filed a lawsuit against IBM alleging
that the company was infringing its intellectual property over the Unix
kernel. SCO claimed that back in 1985, AT&T and IBM signed a contract
to produce a version of Unix called AIX. In 1995, SCO purchased all of the

384 Andrés Guadamuz

122 As cited by Höppner, above n 76.
123 For a more detailed analysis of the case, see Höppner, above n 122.
124 Landgericht Muenchen No 21 0 7240/05.
125 http://www.fortinet.com/news/pr/2005/pr042505_gpl.html.
126 Landgereicht Frankfurt No 2-6 0 224/06.
127 Caldera Sys, Inc v Int'l Bus Machs Corp (D Utah 2003) (No 03-CV-0294).



intellectual property related to Unix from AT&T, hence the infringement
claims. SCO argued that they own part of the code for AIX used in the
Linux kernel code included with all Linux distributions. As a result of this
action, IBM countersued SCO, claiming that the company has been
infringing its (IBM’s) copyright and patents, and alleging that SCO was in
violation of the GPL because they used and modified the Linux kernel
licensed with the GPL.128

The case is still ongoing129 despite the fact that most commentators seem
to believe that SCO’s claims are baseless. At the heart of the problem is that
SCO has been unable to prove ownership of vital components of code used
in Linux. Moreover, when disclosing code, it has been shown that the
elements to which they laid claim had already been released under other
FOSS licences, including the BSD.130 At the time of writing SCO had filed
for bankruptcy,131 and experts agree that FOSS users ‘have little to fear
from this litigation because SCO will struggle in proving IBM did not have
the right to contribute its derivative and independent code to Linux’.132

In addition to the litigation over contracts and copyright, a recent FOSS
concerned competition law. In Wallace v IBM,133 the Seventh Circuit Court
of Appeals found that the GPL did not contravene US antitrust law.
Software developer Daniel Wallace claimed that he wanted to compete
against the Linux operating system by selling derivatives or writing an
operating system from scratch, but that this was not possible because Linux
is offered for free. According to Mr Wallace, the GPL is part of a
conspiracy because it makes software free forever, and it is impossible to
compete against free products. Mr Wallace clearly missed the point of the
definition of free software outlined above. Free is not free as in beer, but
free as in freedom. Mr Wallace lost the case in the first instance because he
could not prove that he had suffered an antitrust injury. Judge Easterbrook
stated:

Many more people use Microsoft Windows, Apple OS X, or Sun Solaris than use
Linux. IBM, which includes Linux with servers, sells mainframes and supercom-
puters that run proprietary operating systems. The number of proprietary
operating systems is growing, not shrinking, so competition in this market con-
tinues quite apart from the fact that the GPL ensures the future availability of
Linux and other Unix offshoots.134

Free and Open-Source Software 385

128 KD Goettsch, ‘SCO Group v IBM: The Future of Open-Source Software’ [2003] University
of Illinois Journal of Law, Technology & Policy 581.

129 The most recent developments in this case can be followed http://www.groklaw.net.
130 G Lehey, SCO's Evidence of Copying between Linux and UnixWare (2004), http://www.

lemis.com/grog/SCO/code-comparison.html.
131 US Bankruptcy Court for the District of Delaware, 07-11337-KG The SCO Group, Inc.
132 A LaFontaine, ‘Adventures in Software Licensing: SCO v IBM and the Future of the Open

Source Model’ (2005) 4(2) Journal on Telecommunications & High Technology Law 449.
133 Daniel Wallace v IBM, Red Hat and Novell, 467 F 3d 1104.
134 Ibid, 6.



All of the above litigation and enforcement strategies point to the con-
clusion that FOSS licences are legally valid, and that the movement rests on
firm legal foundations.

C. FOSS in Practice

The various technical and legal considerations explored above are
important, but beyond that, what is the relevance of open-source software
in everyday life? After all, the intricacies of the various licences and under-
lying philosophies seem to be most relevant to specialist lawyers and
‘Internet geekdom’. However, the significance of FOSS to the wider public
makes it an important subject of legal study.

FOSS is playing an increasingly important role in mainstream software
development. Even so, it is common to read about FOSS in terms of its
opposition to proprietary and commercial software from many commen-
tators including prominent advocates of free and open-source software.135

This rather combative approach seems to be diminishing in relevance as
FOSS develops and follows a philosophy of peer production and open
distribution of code.136 The key question, then, is as to whether it forms a
viable system of creating computer programs.

It is difficult to measure the adoption of FOSS in the wider community.
While Linux has not managed to take a part of the operating system market
away from Microsoft Windows, FOSS has proven to be an excellent system
for servers, with some projects, such as Firefox, having made their way into
mainstream use.137 The FOSS community seems vibrant and active with
SourceForge hosting 257,594 separate projects on its site. A survey of
open-source communities amongst more than 3,000 projects found 127006
identifiable individuals programming code.138

Software relies entirely on source code. One could say that computer
code is the currency of the information age, as the writing of instructions
takes expertise and time. Code, then, is a valuable commodity within the
digital environment. Without code, computers are useless. FOSS is mostly a
system for producing code in a cheap manner by harnessing the power of
crowds of programmers who are willing to write and share it with the
wider community through the use of open licences. If one accepts the idea

386 Andrés Guadamuz

135 R Stallman, ‘Why Software Should Not Have Owners’, in J Gay (ed), Free Software, Free
Society: Selected Essays of Richard M Stallman (Boston, GNU Press, 2002) 47–52.

136 For more about the concept of peer production, see Y Benkler, The Wealth of Networks:
How Social Production Transforms Markets and Freedom (London, Yale University Press, 2006)
59–90.

137 S Weber, The Success of Open Source (Cambridge, MA, Harvard University Press,2004)
190–92.

138 R Ghosh and VV Prakash, ‘The Orbiten Free Software Survey’ (2000) 5(7) First Monday,
http://firstmonday.org/issues/issue5_7/ghosh/index.htm.



of code as a commodity, FOSS is a runaway success. The latest version of
the Debian operating system has 213 million SLOC, while the Linux kernel
has 5.2 million SLOC. To put things into perspective with proprietary soft-
ware, Windows XP has 29 million SLOC, Windows Vista has 50 million
SLOC, and Mac OSX (based largely on open-source code) has 86 million
SLOC.139

The commercial successes enjoyed by FOSS developers are a good
indicator of its viability, a phenomenon reinforced by the enthusiasm with
which public administration bodies around the world have embraced open
source. The EU seems to be at the forefront of FOSS adoption. In 2002, a
report for the European Commission recommended that, wherever
possible, public administrations in the EU should fund software projects
and purchase software that fulfilled certain characteristics compatible with
open licences.140

As a result of this and other research projects,141 the Commission adopted
the European Public Licence (EUPL),142 the latest addition to the expand-
ing open-source licence portfolio. While the licence is initially intended to
be used as the official release method for projects funded under the IDABC
framework, it is also the first open-source licence with an officially
sanctioned translation in the 23 official languages of the EU, making it
particularly useful for public-sector administrations within Member States.

FLOSS has been adopted in the European public sphere as it moves
towards e-governance and e-democracy, allowing cost-effective, stable and
secure access to information technologies. The German federal government
has signed an agreement with IBM to purchase computers for use in its
offices that will have Linux installed, thus greatly reducing their costs and
increasing security.143 The Spanish region of Extremadura decided to move
into open-source operating systems in public institutions and had a total of
100,000 computers running Linux by the end of 2003.144

Another area in which FOSS has proved important is in developing
countries. A simple cost comparison shows the clear advantages of this type
of technology for countries that do not have the resources to purchase
expensive proprietary commercial software licences. For example, German

Free and Open-Source Software 387

139 Figures from H Dahdah, ‘Tanenbaum Outlines his Vision for a Grandma-proof OS’ [2007]
Computer World, http://www.computerworld.com.au/index.php/id;1942598204;pp;1; and
G Robles, Debian Counting (2004), http://libresoft.dat.escet.urjc.es/debian-counting/.

140 R Ghosh et al, ‘Free/Libre and Open Source Software: Survey and Study’, CORDISS
Report D18, (2002), part II B, 23–26.

141 Eg R Ghosh et al, Study on the Economic impact of open source softwareon innovation and
the competitiveness of the Information and Communication Technologies (ICT) sector in the EU,
Contract ENTR/04/112, http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.
pdf.

142 Full text and accompanying documents can be found at http://www.osor.eu/eupl.
143 ‘IBM signs Linux deal with Germany’, BBC News, 3 June 2002, http://news.bbc.co.uk/

1/hi/business/2023127.stm.
144 AE Cha, ‘Europe's Microsoft Alternative’, Washington Post 3 November 2002, A01.



Linux distributor SuSE calculates that the cost of proprietary licences for
operating system and applications generally used for constructing a
Windows-based web server would cost almost €6,000; this generally
includes the licences for one system.145 In contrast, a SuSE Linux distri-
bution that contains all of those applications and can be installed in an
unlimited number of systems would only cost €90, and many Linux distri-
butions can even be downloaded directly from the Internet without cost.

One drawback is that free or low-cost Linux distributions come with no
support. Support must be purchased at extra cost. In addition, some distri-
butions such as Red Hat Enterprise Linux are offered at considerably
higher prices than the free download ones. The additional costs often
represent the payment for full support—and the package usually covers
unlimited licences. A study by Forrester Research of 140 large firms in
North America found that, even taking into consideration some of the
more expensive Linux distributions, the cost of every server machine
running Linux was 60 per cent less than a comparable server running
Windows.146 Others, however, have pointed out that the migration from an
environment running proprietary software and operating systems into a
FLOSS operating system is considerably more expensive than expected. For
example, the local government in Munich commissioned a study to
calculate the cost of migration from Windows to Linux. The study found
that there was no noticeable difference in cost between migrating to Linux
and migrating to a later proprietary Windows version. On the contrary, the
study estimated that the migration might cost as much as €3000 per client
in hardware, software and training.147 Yet others have pointed to examples
of cheap migrations.148 For developing countries, and in particular the
least-developed countries, migration would not generally be a problem as
there are often no operating systems to migrate from.

Along with the cost benefits, FOSS has other characteristics that makes it
valuable for developing countries. As has been stressed, source code is
made available in all FOSS licences, which means that programmers can
make changes to how the software works. This would give those in devel-
oping countries flexibility in adapting the software to their needs—
particularly to make language ports.149 Good examples of this are the many
non-English Linux distributions, often in languages that would not warrant

388 Andrés Guadamuz

145 Figures taken from http://www.suse.com/en/private/products/suse_linux/prof/winprice.
html.

146 J Giera, ‘The Costs and Risks of Open Source’, Forrester Research Report (2004).
147 Unilog Management, Client Study for the State Capital Munich: Executive Summary of the

LHM 2002 (2003), http://www.forget-me.net/Linux/free-software-study-munich.pdf.
148 See eg R Benner, ‘Migration from Windows to Linux Saves Thousands’ [2004] IT

Manager's Journal, http://www.itmanagersjournal.com/software/04/01/09/2231250.shtml.
149 P Krakowski, ‘ICT and Free Open Source Software in Developing Countries’ (2006) 223

IFIP International Federation for Information Processing 319.



the interest of commercial developers.150 Proprietary software, by contrast,
is offered to the user as a block of sealed bits that cannot be changed. Even
attempting to reverse engineer and decompile proprietary software could
be considered unlawful in many jurisdictions.151

A further advantage for developing countries is the reliability and
security of non-proprietary software when compared to proprietary soft-
ware. Faulty, vulnerable or buggy software can cost considerable sums of
money. For example, a survey of IT specialists by CIO Magazine found that
companies spend 7–8 per cent of their computer-related budgets on
security. Another report from 2001 calculates that faulty software costs
companies in the US a staggering US$78 billion a year.152

However, the ultimate advantage of FLOSS for developing countries is
that it offers a powerful tool to encourage the development of native
technologies, enabling the move from imitation to innovation. True, there
will be an initial need to copy and share source code originating from
developed countries, but once this has been achieved, then indigenous
innovation could take over. In the words of Wayne Marshall, a Unix
programmer in Guinea: ‘Open-source advocates can be sure that Africans
get community; Africans get bazaar.’153

With these advantages, one should not be surprised that public institu-
tions in developing nations are looking at non-proprietary software in a
favourable manner. It has the potential to help these nations bridge the
digital divide through enhancing their technological capability.

A good example of a country in which FOSS has been widely adopted is
China, a country heavily involved in the development of indigenous tools
for e-governance. The flexibility of the non-proprietary model can be seen
in the development of a Chinese distribution of Linux called Red Flag
Linux aimed at Chinese consumers.154 Another version of Linux called
Yangfan Linux (which means ‘raise the sails’) supported by the Chinese
government is set to replace Windows and Unix on all computers and
servers in the Chinese government.155 A survey of Chinese software devel-
opers conducted by Evans Data Corporation found that about two-thirds
of those developers are planning to write OSS-related applications in the
next year, a figure that shows the extent to which this model is growing in

Free and Open-Source Software 389

150 Eg Ubuntu Linux is distributed with support for 100 languages (they claim ‘from Afrikaans
to Zulu’). Other noteworthy distributions are Dreamlinux in Brazilian Portuguese; gnuLinEx in
Spanish; and Asianux in Chinese, Korean and Japanese.

151 For more about the law of decompilation, see P Samuelson and S Scotchmer, ‘The Law and
Economics of Reverse Engineering’ (2002) 111 Yale Law Journal 1575.

152 M Levinson, ‘Let's Stop Wasting $78 Billion a Year’, CIO Magazine 15 October 2001,
http://www.cio.com/archive/101501/wasting.html.

153 W Marshall, ‘Algorithms in Africa’, Linux Journal 1 June 2001, http://www.linuxjournal.
com/article.php?sid=4657.

154 http://www.redflag-linux.com/.
155 M Berger, ‘inuxWorld Expo: Chinese Government Raises Linux Sail’, Infoworld 13 August

2002, http://archive.infoworld.com/articles/hn/xml/02/08/13/020813hnchina.xml.



China.156 India is another country where non-proprietary software is
making strong advances. It was calculated that in January 2004, 10 per cent
of all commercial computers sold in India contained Linux as their
operating system.157

The eventual success of non-proprietary software in such populous
countries as India and China could be the greatest encouragement for the
use of this model in developing nations. The size of these markets alone
would provide serious incentives for other countries to replicate the experi-
ences in China and India—and if successful, it might even create a
proprietary/non-proprietary divide.

VI. CONCLUSION

There can be little doubt that the software industry is still one of the
powerhouses of the global economy despite the recent financial downturn.
For example, in 2007 the global worldwide spending on software
amounted to US$257 billion.158 Given the economic importance of
software, it is clear that any discussion about its legal protection is of the
utmost interest to producers, consumers and regulators, who want a share
of the growing demand for computer programs to be satisfied in their
countries.

This chapter has described and analysed just a few of the many areas of
relevance to FOSS development and distribution. It is common to see this
topic treated in a shrill and partisan manner from both promoters and
detractors of the movements. While it is clear that proprietary producers
and commercial developers may see their share of the market reduced by
FOSS, it would be a mistake to look at open source as a potential harm.
There are many possibilities for the coexistence of the models despite the
protestations of those at the fringes. As a personal anecdote, I am writing
this on a Mac, a closed operating system that uses some open-source code,
using both Microsoft Office and NeoOffice (an open source replacement
for Microsoft Office), and have done some research on Firefox. Intransi-
gence? The reality is that there is growing interaction between proprietary
and non-proprietary systems.

The gradual acceptance of FOSS as a valid commercial strategy is shown
by looking at how it has been adopted by the two largest software
companies in the world, IBM and Microsoft, both of which are involved in
a struggle for the profitable server market. IBM dominates the hardware

390 Andrés Guadamuz

156 Evans Data Corporation. Chinese Development Survey, Vol 2 (2002), http://www.evans
data.com/n2/surveys/chinese_toc_02_2.shtml.

157 ‘Linux, Microsoft Face Off in India’, Reuters, 11 August 2003, http://news.com.com/
2100-1016_3-5062158.html.

158 Plunkett Research, InfoTech Industry Overview (2008), http://preview.tinyurl.com/
5e2gwg.



market159 while Microsoft is still ahead in software sales. IBM has thrown
its considerable financial weight behind open source in order to dent
Microsoft’s software dominance. Back in 2000, IBM announced that it
would make an unprecedented investment of US$1 billion in Linux.160

Since then, IBM has become the biggest supporter of FOSS models as a
valuable and profitable business model.161 The fact that it still remains
strong in the software market should serve as an indication that the strategy
has been at least partially successful. Similarly, Microsoft has been shifting
its attitude towards FOSS. While the software giant was initially opposed
to open-source licensing and ideals,162 it has been slowly moving towards a
policy of peaceful coexistence, even releasing its own FOSS licences.163

This has been quite a shift from the company that at one point had
discussed in leaked documents the use of fear, uncertainty and doubt tactics
in order to minimise the threat of Linux and FOSS to Microsoft’s market
share.164 As with many other commercial strategies, it is not clear why
Microsoft shifted its approach to FOSS. It may, however, have been moti-
vated by IBM’s success in harnessing the power of the FOSS community.

Free and Open-Source Software 391

159 S Malik et al, ‘IBM Servers, Worldwide, 2007’, Gartner Research Report G00150814
(2007).

160 J Wilcox, ‘IBM to spend $ 1 billion on Linux in 2001’, CNET News.com 2000, http://news.
cnet.com/news/0-1003-200-4111945.html.

161 J West, ‘How Open Is Open Enough? Melding Proprietary and Open Source Platform
Strategies’ (2003) 32(7) Research Policy 1259.

162 See Guadamuz, above n 70.
163 Such as the OSI-approved Microsoft Public License (Ms-PL), see http://www.opensource.

org/licenses/ms-pl.html.
164 These are known as the Halloween Documents. See http://edge-op.org/iowa/www.

iowaconsumercase.org/011607/6000/PX06501.pdf.


